Periodic Table Structure Info Sheet

Periods (rows) →

Mendeleev - Organized PT based on atomic masses & properties (almost right...)

Groups (columns) ↑

Moseley - Organized PT based on atomic numbers (the way we do it now!)

Three classes of elements: Metals, non-metals, metalloids/semi-metals

Metal Properties:

Chemical Prop.	Physical Prop.			
Few electrons in VALENCE shell (outer shell)	Ductile Malleable			
Lose electrons easily	Good conductors			
POSITIVE charge like Ca ²⁺	Shiny			
Make Cations	Solid at room temp			

Non-metal Properties:

Chemical Prop.	Physical Prop.			
Almost full, or totally full valence shell	NOT Ductile NOT malleable			
Tend to gain electrons	BAD conductors			
NEGATIVE charge like N ³⁻	Mostly solid			
Make ANIONS	Some are gas at room temp			

Semi-metal Properties:

Chemical Prop.	Physical Prop.			
Most have half full valence shell	Have properties of metals AND non-metals			
Make anions OR cations depending on their environment	No way to know which properties of each			

Use this link to color code each class of element on the periodic table to the left. https://tinyurl.com/46a3armf

Make a key here:

- \Box metals
- \Box non-metals
- ☐ metalloids/
 - semi-metals
- <u>https://tinyurl.com/y7jtlkbw</u>
 <u>https://tinyurl.com/abq96op</u>

Some videos about the structure &

creation of the periodic table

https://tinyurl.com/n4o9dns

<u>https://tinyurl.com/q2z47cl</u>

Things in the same period have:

Increasing atomic # and mass L→R Same number of energy levels Period 1 has 1 level Period 2 has 2 levels etc... Things in the same group have: Increasing atomic # and mass ↓ Same number of valence electrons Exceptions: d and f block Similar physical and chemical properties b/c they have same # of valence e⁻s

Valence Electrons:

Outer electrons Matches the "A" column number 1A has 1 v.e⁻, 2A has 2v.e⁻, etc. d and f blocks don't follow rules

Shielding and Z_{eff}:

Outer electrons have trouble "seeing" the protons in the nucleus – the nucleus is "shielded" by the electrons. You can calculate how much "shielding" there is by calculating the "Effective Nuclear Charge"

$$Z_{eff} = Z - S$$

Z_{eff} = effective nuclear charge Z = atomic # S = all non-valence electrons

.....

TURN OVER AND COLOR CODE THE BACK TOO! USE THE SAME LINK AS THE TOP.

R-17

Periodic Table Structure Info Sheet

8	₩ 400 400	10 Ne 0.18	18 18 39.95	36 36 33.80	Xe 31.29	88 222)	118 Juo (294)		
	4	19.00	17 17 35.45	Br 79.90	53 - 25.90 255.90	At At (210) (5	117 117 Uus 294?)		
	14 15 16	16.00 Bm	16 S 32.07	34 34 78.96	Te 52 Te 27.60	84 PO (209)	116 116 (293) (70 70 73.04	102 102 (259)
		7 7 14.01	15 P 30.97	Amerik 33 AS 74.92	SI SD 21.76	88 19 19 19 19 19 19 19 19 19 19 19 19 19	Uup (288)	Tman E8.93	101 101 (258)
		12 C e	14 14 28.09	32 Ge 72.61	50 SI SI 118.71	82 Pb 207.20	114 114 Uuq (289)	Er Er 167.26	100 Fm 100 Fm (257)
(0)	13	5 8 10.81	13 AI 26.98	31 69.72	114.82	81 11 204.38	Under Unf (284)	Homen 67 164.93	99 19 (252)
The Periodic Table of the Elements	Atomic #	Mass	12	100 Z 80	Cd 48 112.41	80 Hg 200.59	Cn Cn (285)	Dy 66 162.50	38 36 (251)
		– Avg. I	÷	55.5 53.55 53.55	47 47 Ag 107.87	73 Au 196.97	Rentpertur 111 (280)	Tataan SS 158.93	97 97 (247)
	Element name → Mercury 80 ← Symbol → Hg 200.59 ←	294 294	₽	28 Ni 58.69	Pd 46 Pd 106.42	78 78 195.08	Ds Ds (281)	Gd 6d 157.25	80 (247) (247)
		200	ø	27 C O 58.93	45 Rh 102.91	192.22 192.22	109 109 Mt (276)	Eu 51.97	American 95 AM (243)
				76 Fe 55.85	Ru Ru 101.07	00 00 190.23	108 Hs (270)	Sm 52 50 150.36	Putantan 34 (244)
			٢	Mn 25 Mn 54.94	Technolin 43 TC (98)	75 75 Re 186.21	107 107 Bh (272)	Pm 61 (145)	Neptodan 93 Np (237)
			ø	Cr 52.00	Morena 42 MO 95.94	T4 74 W 183.84	Sg Sg (271)	Nacional 60 Nd 144.24	U 92 U 238.03
als	netals)		9	vandar 23 50.94	41 Nb 92.91	Tanatan 73 180.95	Dbb Db Db (268)	Pressonante 59 140.91	Protectivium 91 Pa 231.04
earth met on metals	rth metals ids (semi-r	itals IS	ases 🛓	72 71 47.88	Zr 40 21 91.22	172 72 Hf 178.49	ndenfortun 104 Rf (267)	Ce Ce 140.12	70 90 7h 232.04
Alkaline Transitio	Metallo	Non-me Halogen	Noble G	21 21 8C 44.95	33 88.91	71 11 174.97	103 103 (262)	Lattern 57 138.91	88 AC (227)
						57-70 *	89-102 **	anides	tinides
	8	Be 9.01	Magnatian 12 Mg 24.31	20 C 30 40.08	51 51 87.62	Ba 137.33	Ra 88 (226)	*lanth	**30
-	Hydrogen H 1.01	1 3 1 6.94 6.94	11 11 22.99	39.10	85.47	CS 55 132.91	Punction 87 Fr (223)		

Alkali metals